
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Type Inference for GADTs, OutsideIn and
Anti-unification

Gabriela Moreira
Santa Catarina State University

Brazil
gabrielamoreira05@gmail.com

Cristiano Vasconcellos
Santa Catarina State University

Brazil
cristiano.vasconcellos@udecs.br

Rodrigo Ribeiro
Federal University of Ouro Preto

Brazil
rodrigo@decsi.ufop.br

Abstract
Support for generalized algebraic data types (GADT) in ex-
tensions of Haskell allows functions defined over GADTs to
be written without the need for type annotations in some
cases, but it requires type annotations in most of them. This
paper presents a type inference algorithm for GADTs that ex-
tends OutsideIn algorithm using anti-unification to capture
the relationship between the types of arguments and result
of GADT functions. This approach allows inference in cases
where the relationship between types of pattern matches is
explicit in the code, allowing the type annotation in cases
where the relationship is not explicit.

CCS Concepts • Theory of computation → Semantics
and reasoning; Functional constructs; • Software and its
engineering→ Functional languages;

Keywords GADT, type inference, anti-unification

ACM Reference Format:
Gabriela Moreira, Cristiano Vasconcellos, and Rodrigo Ribeiro. 2018.
Type Inference for GADTs, OutsideIn and Anti-unification. In Pro-
ceedings of Brazilian Symposium (SBLP’2018). ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Generalized Algebraic Data Types (GADTs) are a powerful
extension to algebraic data types (ADTs) of functional lan-
guages like Haskell1 and ML, and widely used nowadays.2
Type inference for GADT is difficult and, in many cases, lacks
principal type property.

1GADT is supported as an extension in GHC.
2Examples of applications of GADTs are described, for example, in [4, 8, 18,
19].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SBLP’2018, September 2018, São Carlos
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Haskell adopts an ingenious algorithm for type check-
ing in presence of GADTs. This algorithm, called OutsideIn,
generates constraints from outside a GADT pattern match
to the inside, but not vice versa [17]. However, in order to
guarantee the principal type property and decidability of
constraints solver, in just a few cases, OutsideIn is able to
infer the type of an expression. OutsideIn requires type an-
notation for simple functions, such as f :

data H a where
H1 :: Bool → H Bool
H2 :: Int → H Int

f = λx . case x of
H1 n → n
H2 n → n

Gelain et al. [7] proposes an approach that uses anti-
unification on the types of alternatives to capture the re-
lationship between types associated with GADTs. However,
there are cases where the relationship of arguments with
GADT is not explicit in the code. For these cases it is nec-
essary type annotation, which is not supported by the algo-
rithm. This paper presents an algorithm that combines these
two approaches. The main contribution involves adding type
annotation support to the previous work by using a verifica-
tion very similar to the one in OutsideIn algorithm. Addition-
ally, we present a problem in the previous anti-unification
algorithm and a solution including rigid type variables.
The base language for our system is defined in Section

2. The main ideas of the use of anti-unification on type in-
ference algorithm are presented in Section 3, through some
examples. That section also presents a simplified version of
the algorithm proposed in [7]. The simplified version does
not handle recursive calls, which usually involves polymor-
phic recursion in presence of GADTs. Section 4 presents a
modification of OutsideIn by adding the approach described
in Section 3. Section 5 discusses related work and Section 6
concludes.

2 Types, Terms and Basic Concepts
Before we discuss our approach, we briefly introduce our
base language. We omit data type declarations for simplicity,
and assume that type bindings for data constructors intro-
duced in GADTs and ADTs declarations are given in an initial
type environment.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

SBLP’2018, September 2018, São Carlos Moreira, Vasconcellos and Ribeiro

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Term variables x ,y Type constructors T
Type variables a,b, c Data constructors K

α , β ,γ

Term e ::= x | K | λx . e | e e ′

| let д = e in e ′

| let д :: σ = e in e ′

| case x of p → e
Pattern p := K x

(p1, . . . ,pn)

Simple type τ ,v ::= ν | τ → v | T τ
Type scheme σ ::= τ | ∀α . τ
Typing context Γ ::= ∅ | Γ ∪ {ν : σ }

Constraint C,D ::= τ ∼ v | C ∧C | ϵ

Proper Constr. F ::= C | [α]∀b .C ⊃ F
| F ∧ F

Substitution S ::= ∅ | S ∪ [α 7→ τ]

Figure 1. Syntax of terms and types

The context-free syntax of types and terms is defined
in Figure 1. Programs are represented by terms in lambda
calculus together with let bindings (possibly with a user-
supplied type signature) and case expressions to perform
pattern matching. For simplicity, we consider a simplified
syntax for patterns, that does not include nested patterns,
except for tuples to combine multiple pattern for match. For
example, function test (taken from [17]):

data T a where
T1 :: Int → T Bool
T2 :: T a

test (T1 n) _ = n > 0
test T2 r = r

can be translated to the core language as:

λx . case x of
(T1 n, _) → n > 0
(T2, r) → r

In the examples we used Haskell-like syntax. For simplic-
ity and following common practice, kinds are not considered
in type expressions. Type expressions which are not sim-
ple types are not explicitly distinguished from simple types.
There is a distinguished function type constructor that is
written as an infix operator, τ → τ ′, as usual.

Meta-variables can be used primed or subscripted. We use
a, to denote the sequence a1, . . . ,an , where n ≥ 0. When
used in a context of a set, it denotes the corresponding set
of elements in the sequence {a1, . . . ,an}.

A substitution S is a function from type variables to sim-
ple types. The identity substitution is denoted by id and ◦

denotes substitution composition. Sσ represents the capture-
free operation of substituting S(α) for each free occurrence
of α in σ . Substitution application is extended to sets of
types and typing contexts as usual. The notation S[α 7→ τ]
denotes the substitution S ′ such that S ′(β) = τi if β = αi , for
i = 1, ...,n, otherwise S(β). Also, [α 7→ τ] = id[α 7→ τ].

We also use the following notation: i) ftv(σ) for the set
of free type variables in σ ; ii) gtv(τ) for the set of free type
variables that occur in τ as a parameter of a GADT type
constructor.

2.1 Anti-Unification
A type τ is a generalization (also called first-order anti-
unification [2]) for a set of simple types {τ } if there exist
substitutions S such that Si (τ) = τi , for i = 1, . . . ,n. A gen-
eralization τ of {τ } is a least generalization if, for any gen-
eralization τ ′ of {τ }, there exists a substitution S such that
Sτ ′ = τ .3

A function that gives a least generalization of a finite set
of simple types will be called lcg. An algorithm for com-
puting such function is given in Figure 2, where we use
meta-variables X ,Y ,Z to denote either a type constructor or
type variable, and S is a finite mapping from type variables
to pairs of simple types.

lcg(S) = τ where (τ ,ϕ) = lcg′(S, id), for some ϕ

lcg′({τ },ϕ) = (τ ,ϕ)

lcg′({τ1} ∪ S,ϕ) = lcg2(τ1,τ
′,ϕ ′)

where (τ ′,ϕ ′) = lcд′(S,ϕ)

lcg2(X τ n , X ′ ρm ,ϕ) =
if ϕ(a) = (X τ n , X ′ ρm) for some a then (a,ϕ)

else if n =m then (ψ τ ′
n
,ϕn) where

(ψ ,ϕ0) =

{
(X ,ϕ) if X = X ′

(a,ϕ [a 7→ (X ,X ′)]) otherwise
(τ ′i ,ϕi) = lcд2(τi , ρi ,ϕi−1), for i = 1, . . . ,n

else if n = 0 or m = 0
then (a,ϕ[a 7→ (X τ n , X ′ ρm)])

where a is a fresh type variable

else (τ ′,τ ′′,ϕ ′′) where

(τ ′,ϕ ′) = lcg2(X τ n−1, X ′ ρm−1,ϕ)
(τ ′′,ϕ ′′) = lcg2(τm , ρm ,ϕ

′)

Figure 2. Least Common Generalization

As an example of the use of lcg, consider the following
types (of functions map on lists and trees, respectively):

3The concept of least common generalizationwas studied by Gordon Plotkin
[14, 15], that defined a function for constructing a generalization of two
symbolic expressions.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Type Inference for GADTs, OutsideIn and Anti-unification SBLP’2018, September 2018, São Carlos

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

(a → b) → [a] → [b]
(a → b) → Tree a → Tree b

A call of lcg for a set with these types yields type (a →

b) → c a → c b, where c is a generalization of type construc-
tors [] and Tree (for c to be used in cb, mapping c 7→ ([], Tree)
is saved in parameter ϕ of lcg2, to be reused).

3 Basic Idea
Let’s call GADT term a case term that has a parameter or
the result of a GADT type. In the approach proposed by
Gelain et al. [7], type inference for a GADT term uses the
generalization of the types inferred for all alternatives in its
definition, in order to determine which types are associated
with a GADT.

Let us consider a GADT term defined by:
λx . case x of

(p11, . . . ,p1n) → e1
· · ·

(pm1, . . . ,pmn) → em

Type inference for the definition of terms, in a typing
context Γ, consists of the following steps:
Step 1 Infer a type (τi1, . . . ,τin) → τ ′i for each alternative

(pi1, . . . ,pin) → ei , for i = 1, . . . ,m.
Step 2 Compute a least common generalization (ρ1, . . . , ρn)

→ ρ ′ of the types inferred for all the alternatives,
that is, (ρ1, . . . , ρn) → ρ ′ = lcg({(τi1, . . . ,τin) →

τ ′i }
i=1..m). This is done in order to capture the rela-

tionship between the types of each alternative and the
GADT type, as illustrated by the examples below.

Step 3 Compute the most general unifier S that unifies the
types of all the alternatives, where type variables in
these types that occur as parameters of a GADT type
are considered to be rigid, and the type obtained by
skolemizing type variables in (ρ1, . . . , ρn) → ρ ′ that
occur as parameters of a GADT type.

Step 4 Finally, the type inferred is S((ρ1, . . . , ρn) → ρ ′),
where (ρ1, . . . , ρn) → ρ ′ is the type computed in
Step 2 and S is the substitution computed in Step 3.

This type inference process is illustrated next through
some examples.

Example 1. Type Inference of function test
Consider type inference for function test presented in Section
2. The types inferred for the alternatives in the definition of
test are:

test :: T Bool → a → Bool
test :: T b → c → c

The lcg of these types yields type T b ′ → c ′ → d ′.
Note that type b ′ occurs as a parameter of a GADT type
constructor, and thus, the types which correspond tob ′ in the
type of each alternative may be distinct. On the other hand,
the types corresponding to c ′ should be the same in each
alternative, as well as for d ′. This is checked by computing

the most general unifier of the types of all the alternatives
and type T k → c ′ → d ′, where k is a skolem constant (that
is, type variables that occur as a parameter of a GADT type
constructor are not unified). The type inferred for function
test is thus:

test :: ∀a. T a → Bool → Bool

∀a. T a → a → a could also serve as a type for test, and
in that case expression (test T 2 ’a’) would be type-correct.
Note that none is an instance of the other and allowing a
more general type signature for test, such as for example
∀a,b.T a → b → b, would not preserve type soundness
since, for example, application test (T1 3) 3 == 5 would be
type correct, and result in runtime type error.
In Haskell, type inference for function test generates im-

plication constraints [17, 22], given by (where ∼ denotes type
equality and ⊃ denotes implication):

(a ∼ T b) ∧ (b ∼ Bool ⊃ c ∼ Bool) ∧ (a ∼ T d) ∧ (c ∼ e)

Type equality constraint (b ∼ Bool) is generated from
T1 n, type equality constraint (c ∼ Bool) is generated from
the first alternative in the definition of test, type equality
constraint (c ∼ e) from the second alternative in the def-
inition of test, where e is the type of r , which is, in this
case, free to be unified ([e 7→ c]). The meaning of an im-
plication constraint can be understood by considering that,
in this example, (b ∼ Bool ⊃ c ∼ Bool) indicates that if
type variable b is instantiated to Bool then so must c . These
constraints have substitution [c 7→ Bool] as a solution. Ap-
plication of this substitution on the type of test yields type
T b → Bool → Bool, which is the same type inferred by our
algorithm. However, type variable c is considered untouch-
able in the implication constraint, and then type inference
fails. Type variables which occur in implication constraints
are considered untouchable within these constraints, and
can only be substituted as a result of applying substitutions
obtained as a result of solving other constraints. In GHC 7.6.x
type inference proceeds as outlined, but from version 7.8.1
a more restricted set of GADT functions for non-annotated
types was adopted [7].

Example 2. In some cases anti-unification does not capture
the relationship between the types of the alternatives and
the GADT type, as illustrated by the following example,
presented in [20]:

data Erk a b where
I :: Int→ Erk Int b
B :: Bool→ Erk a Bool

д (I a) = a + 1
д (B b) = b && True

The types inferred for the first and second alternatives in
the definition of д are, respectively, (Erk Int b) → Int and
(Erk a Bool) → Bool. The least common generalization of
these types is: (Erk a′ b ′) → c . In our approach, since type

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

SBLP’2018, September 2018, São Carlos Moreira, Vasconcellos and Ribeiro

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Γ ⊢ e : (τ , S)

∀α . τ ′ ∈ Γ τ = [α 7→ β]τ ′ β fresh
Γ ⊢ x : (τ , id)

(VAR)
Γ,x : α ⊢ e : (τ , S) α fresh

Γ ⊢ λx .e : (S α → τ , S)
(ABS)

Γ ⊢ e1 : (τ1, S1)
S1 Γ ⊢ e2 : (τ2, S2)

S ′ = unify({τ2 → α = τ1})
S = S ′ ◦ S2 ◦ S1 α fresh

Γ ⊢ e1 e2 : (S α , S)
(APP)

Γ ⊢ e1 : (τ1, S1) α = ftv(τ1) − ftv(S1 Γ)
S1 Γ,x : ∀α . τ1 ⊢ e2 : (τ2, S2) S = S2 ◦ S1

Γ ⊢ let x = e1 in e2 : (S τ2, S)
(LET)

for i = 1, . . . ,m Γ ⊢pat pi → ei : τi → τ ′i
ρ → ρ ′ = lcg({τi → τ ′i }

i=1..m)

α = gtv(ρ) k are fresh Skolem constants
β =

⋃i=1..m gtv(τi → τ ′i) βr are fresh rigid type variables
S = unifyall([α 7→ K](ρ → ρ ′), [β 7→ βr]{τi → τ ′i }

i=1..m)

Γ ⊢ case e of p → e : (S(ρ → ρ ′), S)
(CASE)

Γ ⊢pat p → e : τ → τ ′

Γ ⊢ K : ∀a.τ1 → . . .→ τp → T a α fresh S = [a 7→ α] Γ ∪ S{x1 : τ1, . . . ,xp : τp } ⊢ e : (τe , Se)
Γ ⊢pat K x1 . . . xp → e : (T α → τe , Se)

(PAT)

for i = 1, . . . ,n Γ ⊢ Ki : ∀ai .τi1 → . . .→ τipi α i fresh Si = [a 7→ α]i
S = S1 ◦ . . . ◦ Sn Γ ∪

⋃i=1..n{xi1 : τi1, . . . ,xipi : τipi } ⊢ e : (τe , Se)
Γ ⊢ (K1 : x11 . . . x1p1 , . . . ,Kn : xn1 . . . xnpn) → e : ((T1 α1, . . . ,Tn αn) → τe , Se)

(TPAT)

Figure 3. Type inference

variable c is not a parameter of a GADT type constructor,
we try to unify types Int and Bool, which fails, causing the
definition of д to be rejected. However, type Erk a a → a
would be a valid type for д.

Example 3. When a type variable occurs associated with
the GADT in some alternative, this variable is considered
rigid. If it is necessary to unify this variable the function
must be rejected. This occurs in cases where generalization
is not able to determine this association in all alternatives,
as in example:

data R a where
R1 :: Int → R Int
R2 :: a → R a

testR (R1 x) y = if y then x else x + 1
testR (R2 x) y = if x == y then x else y

The types inferred for alternatives are, respectively, R Int
→ Bool → Int and R a → a → a. The least common general-
ization of these types is: R b → c → b. The generalization is
not able to capture the association of type variable c with the

GADT, therefore, we try to unify c with Bool and a, but uni-
fication fails because a is substituted by a rigid type variable,
and function testR is rejected.
This rigidity is necessary because, in the second alterna-

tive, the type of the second parameter must be the same
that occurs in the GADT, and inference of a type that vio-
lates this relation can cause a runtime error. For example,
R a → Bool → a is not a valid type for testR since expression
testR (R2 1) True would cause an runtime error.

3.1 Type inference for alternatives
The main ideas of our type inference algorithm are formal-
ized by rule (CASE) presented in Figure 3. Type inference for
expressions and patterns are standard.
Function unifyall, used in rule (CASE) for unifying the

types of alternatives, is defined below. It uses a modified
version of usual unification in order to take into account for
Skolem constants (k) and rigid type variables (α r):

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Type Inference for GADTs, OutsideIn and Anti-unification SBLP’2018, September 2018, São Carlos

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

unifyall(τ , ∅) = id
unifyall(τ , {τ ′} ∪ {τ }) = unifyall(Sτ , {τ }) ◦ S
where S = unify(τ ,τ ′)

unify(α r ,τ) = if τ == α r then id else fail
unify(k,τ) = id
unify(α ,τ) = if α < ftv(τ) then [α 7→ τ]

else fail
unify(τ1,τ2) = unify(τ2,τ1) if τ2 is a variable

or a Skolem constant
unify(Cτ1..τn ,C ′τ ′1 ..τ

′
m) = if n ==m and C = C ′

then Sn ◦ . . . ◦ S1
where S0 = id

Si = unify(Si−1(τi), Si−1(τ ′i)) for i = 1..n

Functions defined over GADTs often involves polymor-
phic recursion, Gelain et al. [7] proposes to handle poly-
morphic recursion in a way that is similar to type inference
for overloading in system CT [1]. But, for simplicity, that
problem was not addressed here.

4 Modified OutsideIn
Since our solution is mostly focused on the (CASE) rule, we
are able to reuse a big portion of the OutsideIn algorithm
[17]. The process4 we propose is applied in addition to the
OutsideIn constraint generator for case expressions, which
would normally return a (τ , F) tuple. Since our algorithm re-
turns a substitution S , the modified OutsideIn version returns
a (τ , F , S) tuple.
Rules (VAR) and (CONS) had the id substitution added to

their returns. Rules (APP) and (ABS) are changed only to prop-
agate the substitution returned, composing when needed.
Rule (LETA) is important, since our algorithm does nothing
about type signatures. When an annotated let expression
occurs, all substitutions returned are discarded, and the orig-
inal OutsideIn constraint generation is done.

The most significant modification compared to Outside is
in Rule (LET). When an unannotated let expression is found,
the implication constraints generated are discarded, since
they are only needed to check annotations. In this situation,
the GADT inference done by our algorithm is finally applied
to constraints and types. The remaining process is preserved.

In order to comport both methods, rule (CASE) does, inde-
pendently, both the constraint generation for alternatives,
from OutsideIn, and the procedure described on 3.1, which
is abstracted by the so-called Anti-unification Solver (see
Figure 6). On (CASE), the information returned by (PAT) is
combined to form constraints (from OutsideIn) and groups of
form (τ → α , F , S), that are going to be the anti-unification
solver parameter.

4A Haskell implementation of this algorithm is available at github.com/
GabrielaMoreira/GADTInference/

4.1 Anti-unification Solver
The purpose of the anti-unification solver is to infer a type
for the alternatives of a case expression. This is done with
the procedure described in Section 3. If one looks at the
solver’s formalization (Figure 6) and rule (CASE) from Figure
3, two differences can be noticed: on the first and the last
step.

Such differences happen because the substitution returned
by the anti-unification solver must contain bindings for the
original type variables τi and α , from the modified OutsideIn
(CASE). This is essential once said substitution will only be
applied to anything when some unannotated let expression
occurs.
Given (τi → α , Fi , Si), the information about types ob-

tained so far is gathered in both Si and Fi . Therefore, the
first step is to use that information to specialize τi → α ,
obtaining the actual types inferred for each alternative. This
is done by applying the substitution Si and calling the con-
straint solver for simple constraints in Fi that are filtered
by function simple (see Figure 5). Next, the least common
generalization is found, GADT associated type variables are
skolemized and unifyall is called for the resulted type and
the list of specialized types obtained on first step.
The last step is necessary because the substitution re-

turned by the first application of unifyall binds variables
from specialized types. In order to get the bindings for the
original types, another unifyall is called, unifying the actual
type inferred (S(ρ → ρ ′)) with each one of them.

4.2 Solving stage
Rule (INFER) describes how the information gathered in con-
straints and substitutions is combined to actually infer a type.
Given (τ , F , S), S is applied to F , since it can make unsolv-
able constrains solvable. Then, constraint solving is done for
S(F) exactly like on OustsideIn (Figure 7), and its result - a
substitution - is composed with S finally applied to τ .

Example 4. Consider the expression from Section 1:

data H a where
H1 :: Bool → H Bool
H2 :: Int → H Int

λx . case x of
H1 n → n
H2 n → n

Although this is somewhat simple, and does have a princi-
pal type, OutsideIn is not able to infer it. Once the expression
is not annotated, the modified version will use the substi-
tution returned and, for this example, infer the type. To
understand how that substitution is found and applied, let’s
follow the algorithm from Figure 4.
The tuples returned, by the rule (PAT), for the first and

second alternatives are: (H α1 → α1, [α1],α1 ∼ Bool, ϵ, id)
5

github.com/GabrielaMoreira/GADTInference/
github.com/GabrielaMoreira/GADTInference/

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

SBLP’2018, September 2018, São Carlos Moreira, Vasconcellos and Ribeiro

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Γ ⊢inf e : τ

⊢ e : (τ , F , S) ⊢s S(F) : Ss
⊢inf e : Ss ◦ S τ

(INFER)

Γ ⊢ e : (τ , F , S)

∀a. τ ′ ∈ Γ τ = [a 7→ α]τ ′ α fresh
Γ ⊢ x : (τ , ϵ, id)

(VAR)
K : ∀a.C ⇒ τ S = [a 7→ α]τ α fresh

Γ ⊢ K : (S τ , S C, id)
(CONS)

Γ ⊢ e1 : (τ1, F1, s1) Γ ⊢ e2 : (τ2, F2, S2)
α fresh F = F1 ∧ F2 ∧ (τ1 → τ2 ∼ α)

Γ ⊢ e1 e2 : (α , F , S1 ◦ S2)
(APP)

Γ ⊢ e1 : (τ , F1, S1) ⊢s simple(S1 F1) : Ss S = S1 ◦ Ss
b = ftv(S τ) − ftv(S Γ) β fresh Sk = [b 7→ β]

Γ ∪ {д : ∀β .Sk S τ } ⊢ e2 : (τ ′, F2, S2)
Γ ⊢ let x = e1 in e2 : (S τ ′, F2, S2)

(LET)

Γ,x : α ⊢ e : (τ , F , S) α fresh
Γ ⊢ λx .e : (α → τ , F , S)

(ABS)

Γ ∪ {д : ∀a.τ } ⊢ e1 : (τ ′, F1, S1) Γ ∪ {д : ∀a.τ } ⊢ e2 : (ρ, F2, S2)
F = F2 ∧ [ftv(Γ)](∀a.F1) ∧ τ ∼ τ ′)

Γ ⊢ let {д :: ∀a.τ = e1} in e2 : (ρ, F , S2)
(LETA)

Γ ⊢ e : (τe , Fe , Se) α fresh
Γ ⊢pat pi → ei : (τi → ρi ,αi ,Di , Fi , Si) F ′

i = Fi ∧ τe ∼ τi ∧ [α i]Di ⊃ α ∼ ρi for i = 1, . . . ,n
F = Fe ∧

∧i=1..n F ′
i ⊢a [(Si ,τi → α , Fi ∧ Di ∧ α ∼ ρi)]

i=1..n : Sa S = Se ◦ Sa ◦ S1 ◦ . . . ◦ Sn

Γ ⊢ case e of [pi → ei]
i=1..n : (α , F , S)

(CASE)

Γ ⊢pat p → e : τ → τ ′

K : ∀α .b .D ⇒ τ1 → . . .→ τp → T a b < ftv(Γ,τe) α fresh S = [a 7→ α]
Γ ∪ S{x1 : τ1, . . . ,xp : τp } ⊢ e : (τe , Fe , Se)

Γ ⊢pat K x1 . . . xp → e : (T α → τe , [α ∪ ftv(Γ,τe)],∀b .S D, Fe , Se)
(PAT)

for i = 1, . . . ,n Γ ⊢ Ki : ∀ai .bi .Di ⇒ τi1 → . . .→ τipi b < ftv(Γ,τe) α i fresh Si = [a 7→ α]i
α =

⋃1=1..n α i D =
∧1=1..n Di S = S1 ◦ . . . ◦ Sn Γ ∪

⋃i=1..n{xi1 : τi1, . . . ,xipi : τipi } ⊢ e : (τe , Fe , Se)

Γ ⊢ (K1 : x11 . . . x1p1 , . . . ,Kn : xn1 . . . xnpn) → e : ((T1 α1, . . . ,Tn αn) → τe , [α ∪ ftv(Γ,τe)],∀b .S D, Fe , Se)
(TPAT)

Figure 4. Modified OutsideIn

simple(C) = C
simple(F1 ∧ F2) = simple(F1) ∧ simple(F2)

simple([α](∀b .F)) = [α](∀b .simple(F))
simple([α](∀b .C ⊃ F)) = ϵ C . ϵ

Figure 5. Filter for simple constraints

and (H α2 → α2, [α2],α2 ∼ Int, ϵ, id). Since this is a case ex-
pression, the anti-unification solver will be invoked, solving

constraints α1 ∼ Bool and α2 ∼ Int, the types of alterna-
tives are: H Bool → Bool and H Int → Int. The least com-
mon generalization of the alternatives types will be found as:
H b → b.
Note that type variable b will be skolemized, once it is

associated with a GADT. Unifying this with the alternatives
types H Bool → Bool and H Int → Int will give us id , since
b cannot be bound. Next, the skolemization is removed and
id is applied, resulting still on H b → b. This will be unified
with H α1 → α and H α2 → α , generating the substitution
S = [b 7→ α1,α2 7→ α1,α 7→ α1].

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Type Inference for GADTs, OutsideIn and Anti-unification SBLP’2018, September 2018, São Carlos

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

⊢a [(Si ,τi → α , Fi)]
i=1..n : Sa

for i = 1, . . . ,n ⊢s simple(Fi) : S ′i
ρ → ρ ′ = lcg({S ′iSi τi → α }i=1..n)

γ = gtv(τ) k are fresh Skolem constants
β =

⋃i=1..n gtv(S ′iSi τi → α)

βr are fresh rigid type variables
S = unifyall([γ 7→ K](ρ → ρ ′),

[β 7→ βr]{S ′iSi τi → α }i=1..n)
Sa = unifyall(S ρ → ρ ′, {τi → α }i=1..n)

⊢a [(Si ,τi → α , Fi)]
i=1..n : Sa

Figure 6. Anti-unification Solver

⊢s F : S

simple(F) = Fs ⊢∗s Fs : Ss ⊢∗s SsF : S
⊢s F : S ◦ Ss

(S-SOLVE)

⊢∗s F : S

⊢∗s ϵ : id
(S-EMPTY)

⊢∗s F1 : S1 ⊢∗s S1F2 : S2
⊢∗s F1 ∧ F2 : S2 ◦ S1

(S-SPLIT)

⊢∗s τ ∼ τ : id
(S-REFL)

⊢∗s (
∧

i τi ∼ τ ′i) : S
⊢∗s Tτ ∼ Tτ ′ : S

(S-CONS)

v < τ S = [v 7→ τ]

⊢∗s v ∼ τ : S
(S-UL)

v < τ S = [v 7→ τ]

⊢∗s τ ∼ v : S
(S-UR)

⊢∗s F : S tv(S(α)) ∩ b = ∅ b ∩ dom(S) = ∅

⊢∗s [α](∀b .F) : S
(S-SIMPL)

C . ϵ ⊢∗s C : Ss
⊢s Ss (F) : S α ∩ dom(S) = ∅

⊢∗s [α](∀b .C ⊃ F) : S
(S-SIMPL)

Figure 7. Constraint Solver

Since this is not a let expression, the solving will be
done only at (INFER). However, the substitution returned
by the anti-unification solver is enough to infer the type.
Therefore, it’s application on the constraints will make them
all solvable, turning implication constraints into simple ones.
Solving them will return the remaining bindings, which will
be composed with S and finally applied to the fresh original
type to return the final type inferred: ∀α .H α → α .

In some caseswhere our approach is not able to capture the
relationship between the types and the GADT, the type could
still be inferred by OutsideIn. In order to allow this, some
condition should be added to verify if the anti-unification
solver has failed, and if so, make it return the id substitu-
tion. This way, the original constraints will be passed to the
constraint solver and type inference will be done entirely by
OutsideIn. Such verification is not described in the algorithm
formalization for clarity purposes.

5 Related Work
Haskell was one of the very first programming languages
supporting GADTs. Woobly types [9, 10] describes one of
the first implementations of GADTs in GHC, and most of
type checking of GADT functions is done using type annota-
tions. These types, called rigid types, are propagated to inner
scopes by means of some specific rules. Such propagation
strategies are also explored by Pottier and Régis-Gianas [16]
which define a two-pass type inference algorithm, separating
traditional Hindley-Milner type inference from the propaga-
tion of explicit type annotations. This separation makes the
mechanism of type propagation more efficient.
Currently, GHC uses the type inference algorithm de-

scribed in [17, 22], called OutsideIn, which extracts type
constraints from expressions occurring in inner scopes and
solves these constraints in the outermost scope, avoiding an
ad hoc approach for propagating rigid types. Besides using a
more natural mechanism for propagation of annotated types,
this approach enables more helpful error messages and type
inference in a restricted number of function declarations. In
these cases a rather restrictive rule is adopted in the defi-
nition of untouchable variables, so that only the types of
functions for which the existence of a principal type can be
guaranteed are inferred. In [21] Sulzmann and Schrijvers
introduce some ideas adopted in the OutsideIn algorithm.

Lin and Sheard present the Pointwise GADT type system
[12], that uses a modified unification algorithm to support
parametric instantiation and type indexing. In [11] Lin pro-
poses algorithm P, more restrictive than Pointwise, that
does not require type annotations. The algorithm applies
generalization only in patterns of alternatives and supports
polymorphic recursion using an approach similar to [13] and
places an iteration limit to guarantee termination.

Chore uses choice types in order to describe the type of a
function [3]. A set of choices with the same name represents
a set of types of each alternative of an expression. For ex-
ample, f ⟨H Int ,H Bool⟩ → f ⟨Int ,Bool⟩ can represent the
type of f , presented in introduction. New sets of choices are
added when new scrutinee type need to be represented, like
functions with nested cases.

In Chore[3], choice types are propagated during all the in-
ference process, the reconciled type is generated just to com-
municate with users using an algorithm (named reconcile)

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

SBLP’2018, September 2018, São Carlos Moreira, Vasconcellos and Ribeiro

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

on the MAIN rule. But, as choices do not have an order, an ad-
ditional algorithm (named coherent) is needed to ensure that
functions with types like f ⟨H Int ,H Bool⟩ → f ⟨Bool , Int⟩
could not be accepted, the verification is made on the CASE
rule.

Besides that, rule APP has to additionally verify whether
the argument type matches with one or more alternatives
of the function that is called, where there are three possible
cases: 1) if it matches exactly, then the function is considered
well typed, 2) if it matches in some cases, then a set of possible
choice types is returned, 3) if there is nomatch, the function is
considered ill typed. This third case makes possible to reject
application of functions where the alternative exists for data
type, but is not implemented. Chore can capture more errors
compared to other approaches (including type inference used
by GHC) due to rule APP, but it is not able to infer the type
of GADT functions with polymorphic recursion.
Guarrigue et. al. [6] presents a type system and its infer-

ence algorithm for a language with GADTs with returns a
principal type, when one exists. The main insight of [6] is to
use a refined notion of type ambiguity to reduce the amount
of type annotations needed. In order to avoid a aggressive
type propagation mechanism, they introduce the notion of
ambivalent types, which denote set of simple type expres-
sions containing certain type equivalences within the type
structure. According to the authors, their proposed inference
algorithm follows the ideas developed by [5] for first-class
polymorphism.

6 Conclusion
The OutsideIn algorithm is quite efficient in type checking
of GADT expressions. However, the set of expressions that
it is able to infer the type is restricted. It (and, consequently,
GHC) is not able to infer a type for unannotated functions
presented in Examples 1, 2 and 4. This paper adds an anti-
unification-based type inference method to the OutsideIn
algorithm. The algorithm presented is able to infer a type for
Examples 1 and 4 preserving the capacity to verify annotated
functions given by the constraints approach in OutsideIn.

Every GADT inference algorithm has difficulty to explain
to the programmer which expressions can be accepted with-
out type annotation. We believe that our approach is more
intuitive. But it is necessary, like the OutsideIn, to determine
in which cases it is possible to guarantee the principal type
property. For this, we still must provide a declarative descrip-
tion that specifies the set of programs that are well typed
according to our type inference.
We have focused exclusively on GADTs, GHC supports

others advanced type system features, such as type classes
and type families [22]. A future work is to adapt our approach
to address these features.

References
[1] Carlos Camarão, Lucília Figueiredo, and Cristiano Vasconcellos. 2004.

Constraint-set Satisfiability for Overloading. In Proc. of the 6th ACM
SIGPLAN International Conf. on Principles and Practice of Declarative
Prog. ACM, 67–77.

[2] C.C. Chang and H.J. Keisler. 2012. Model Theory. Dover Books on
Mathematics. 3rd ed.

[3] Sheng Chen and Martin Erwig. 2016. Principal Type Inference for
GADTs. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’16). ACM.

[4] James Cheney and Ralf Hinze. 2003. First-class phantom types. Techni-
cal Report CUCIS TR-2003-1901. Cornell University.

[5] Jacques Garrigue and Didier Rémy. 1999. Semi-explicit First-class
Polymorphism for ML. Inf. Comput. 155, 1-2 (Nov. 1999), 134–169.
https://doi.org/10.1006/inco.1999.2830

[6] Jacques Garrigue and Didier Rémy. 2013. Ambivalent Types for Prin-
cipal Type Inference with GADTs. In Programming Languages and
Systems, Chung-chieh Shan (Ed.). Springer International Publishing,
Cham, 257–272.

[7] Adelaine Gelain, Cristiano Vasconcellos, Carlos Camarão, and Rodrigo
Ribeiro. 2015. Type Inference for GADTs and Anti-unification. In Pro-
ceedings of the 19th Brazilian Symposium on Programming Languages
- Volume 9325. Springer-Verlag New York, Inc., New York, NY, USA,
16–30.

[8] Ralf Hinze. 2003. Fun with phantom types. In The fun of programming,
Jeremey Gibbons and Oege de Moor (Eds.). Palgrave, 245–262.

[9] Simon P. Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. 2006. Simple Unification-based Type Inference for GADTs.
SIGPLAN Not. 41, 9 (2006), 50–61.

[10] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich. 2004.
Wobbly Types: Type Inference for Generalised Algebraic Data Types.
Technical Report MS-CIS-05-26. University of Pennsylvania. http:
//research.microsoft.com/apps/pubs/default.aspx?id=65143 Microsoft
Research.

[11] Chuan-Kai Lin. 2010. Practical Type Inference for the GADT Type System.
Ph.D. Dissertation. Portland, OR, USA. Advisor(s) Tim Sheard.

[12] Chuan-Kai Lin and Tim Sheard. 2010. Pointwise Generalized Algebraic
Data Types. In Proc. of the 5th ACM SIGPLAN Workshop on Types in
Lang. Design and Implementation (TLDI ’10). ACM, New York, NY, USA,
51–62.

[13] Alan Mycroft. 1984. Polymorphic Type Schemes and Recursive Defi-
nitions. In Proc. of the 6th Colloquium on International Symp. on Prog.
Springer-Verlag, 217–228.

[14] Gordon D Plotkin. 1970. A note on inductive generalisation. Machine
intelligence 5, 1 (1970), 153–163.

[15] Gordon D Plotkin. 1971. A further note on inductive generalisation.
Machine Intelligence 6 (1971), 101–124.

[16] François Pottier and Yann Régis-Gianas. 2006. Stratified Type Inference
for Generalized Algebraic Data Types. SIGPLAN Not. 41, 1 (2006), 232–
244.

[17] Tom Schrijvers, Simon P. Jones, Martin Sulzmann, and Dimitrios Vy-
tiniotis. 2009. Complete and Decidable Type Inference for GADTs.
SIGPLAN Not. 44, 9 (2009), 341–352.

[18] Tim Sheard. 2004. Languages of the Future. SIGPLAN Notices 39, 12
(2004), 119–132.

[19] Tim Sheard. 2005. Putting Curry-Howard to work. In Proceedings of
ACM Workshop on Haskell. 74–85.

[20] Peter Stuckey and Martin Sulzmann. 2002. A Theory of Overloading.
In Proc. of the 7 th ACM International Conf. on Func. Prog. 167–178.

[21] Martin Sulzmann, Tom Schrijvers, and Peter J. Stuckey. 2008. Type
Inference for GADTs via Herbrand Constraint Abduction. (2008).

[22] Dimitrios Vytiniotis, Simon P. Jones, Tom Schrijvers, and Martin Sulz-
mann. 2011. OutsideIn(X): Modular Type Inference with Local As-
sumptions. J. Funct. Program. 21, 4-5 (2011), 333–412.

8

https://doi.org/10.1006/inco.1999.2830
http://research.microsoft.com/apps/pubs/default.aspx?id=65143
http://research.microsoft.com/apps/pubs/default.aspx?id=65143

	Abstract
	1 Introduction
	2 Types, Terms and Basic Concepts
	2.1 Anti-Unification

	3 Basic Idea
	3.1 Type inference for alternatives

	4 Modified OutsideIn
	4.1 Anti-unification Solver
	4.2 Solving stage

	5 Related Work
	6 Conclusion
	References

